Software Testing Methods an’

Techniques TAXONOMY SHEET

It is very important to differentiate between software testing and software quality
assurance. Software testing is a too late stage if quality is not built into the software
product.

Software Quality Assurance

Quality control is defined as the
processes and methods used to monitor
work and observe whether requirements
are met. It focuses on reviews and
removal of defects before shipment of
products

Software testing is a popular
risk management strategy. It
is used to verify

that functional requirements
were met.

Quality

Control

Software
Testing

Software

Software configuration management is
concerned with labeling, tracking,

and controlling changes in the software
elements of a system. It controls

the evolution of a software system by
managing versions of its software
components and their relationships

Black-Box Testing || White-Box Testing || Gray-Box Testing (Functional

(Functional) (Structural) and Structural)
With black-box testing, the The tester examines the internal Gray-box testing is a combination of
tester views the program as a structure of the pro-gram or plack- and white-box testing. The tester
black-box and is completely system. Test data is driven by studies the requirements specifications
unconcerned with the internal examining the logic of the and communicates with the developer
structure of the program or program or system, without to understand the internal structure of
system. concern for the program or the system.

system requirements.

TESTING TECHNIQUES
COVERING DIFFERENT PURPOSES
ALONG THEIR CLASSIFICATION

Technique\ Description Manual Automated Static Dynamic Black-box White-box

Acceptance Testing * * * *

Final testing based on the end-
user/customer specifications, or based
on use by end-users/customers over a
defined period of time

Ad-hoc Testing . .
Similar to exploratory testing, but often

taken to mean that the testers have
significant understanding of the
software before testing it

Alpha Testing

Testing of an application when * * *
development is nearing completion;
minor design changes may still be made
as a result of such testing. Typically

done by end-users or others, not by
programmers or testers

Basis Path testing .

Identifying tests based on flow and
paths of a program or system

Beta Testing .
Testing when development and testing

are essentially completed and final bugs
and problems need to be found before
final release. Typically done by end-
users or others, not by programmers or
testers

) o
) o

) o
) o

Black-box testing

Testing cases generated based on the
system’s functionality

Bottom-up testing

Integrating modules or programs
starting from the bottom

Boundary value testing

Testing cases generated from boundary
values of equivalence classes

Branch coverage testing

Verifying that each branch has true and
false outcomes at least once

) o

Branch/condition coverage

testing

Verifying that each condition in a
decision takes on all possible outcomes
at least once

* ot | | | b
* ot | | | b
) o

) o

Cause-effect graphing

Mapping multiple simultaneous inputs
that may affect others to identify their
conditions to test

) o
) o
) o

Comparison testing

) o
) o
) o
) o

Comparing software weaknesses and *
strengths to competing products

TESTING TECHNIQUES
COVERING DIFFERENT PURPOSES
ALONG THEIR CLASSIFICATION

Technique\ Description Manual Automated Static Dynamic |Black-box | White-box

Compatibility testing * * *

Testing how well software performsin a
particular hardware/software/operating
system/network environment

Condition coverage testing . . .
Verifying that each condition in a

decision takes on all possible outcomes
at least once

CRUD testing

Building a CRUD matrix and testing all *
object creations, reads, updates, and
deletions

Database testing

Checking the integrity of database field
values

Decision tables

Table showing the decision criteria and
the respective actions

Desk checking
Developer reviews code for accuracy

) 2
) 2

* | | % %
) o

End-to-end Testing

Similar to system testing; the “macro”
end of the test scale;

involves testing of a complete
application environment in a situation
that mimics real-world use, such as
interacting with a database, using
network communications, or interacting
with other hardware, applications, or
systems if appropriate

) o
) o
) o

Equivalence partitioning
Each input condition is partitioned into * *
two or more groups.

Test cases are generated from
representative valid and invalid classes

Exception testing

Identifying error messages and *
exception handling processes and
conditions that trigger them

Exploratory testing

Often taken to mean a creative, informal *
software test that is not based on
formal test plans or test cases; testers
may be learning the software as they
test it

Free form testing . . .
Ad hoc or brainstorming using intuition

to define test cases

Gray-box testing

A combination of black-box and white- * * * *

box testing to take advantage of both

Histograms . .
A graphical representation of measured

values organized according to the
frequency of occurrence used to
pinpoint hot spots

Incremental integration
* | * * | *
Continuous testing of an application as
new functionality is added; requires
that various aspects of an application’s
functionality be independent enough
to work separately before all parts of
the program are completed, or that
test drivers be developed as needed;
done by programmers or by testers

Inspections . . .
Formal peer review that uses checklists, *

entry criteria, and exit criteria

Integration testing

Testing of combined parts of an * * * *

application to determine if they functio
together correctly. The “parts” can be
code modules, individual applications,
or client and server applications on a
network. This type of testing is
especially relevant to client/server and
distributed systems.

-

JADs . . .
Technique that brings users and

developers together to jointly design
systems in facilitated sessions

Load testing

Testing an application under heavy * * * *

loads, such as testing of a Web site
under a range of loads to determine at
what point the system’s response time
degrades or fails

Mutation testing
A method for determining if a set of test

data or test cases is useful, by
deliberately introducing various code
changes (“bugs”) and retesting with the
original test data/cases to determine if
the “bugs” are detected. Proper
implementation requires large
computational resources.

TESTING TECHNIQUES
COVERING DIFFERENT PURPOSES
ALONG THEIR CLASSIFICATION

Technique\ Description Manual Automated Static Dynamic |Black-box | White-box

Orthogonal array testing * * *

Mathematical technique to determine
which variations of parameters need to

be tested
Pareto analysis
Analyze defect patterns to identify * *

causes and sources

Performance testing

Term often used interchangeably with * * * * *
“stress” and “load” testing. Ideally
“performance” testing (and any other
“type” of testing) is defined in
requirements documentation or QA or

Test Plans

Positive and negative

testing *

Testing the positive and negative values * *
for all inputs

Prior defect history testing

Test cases are created or rerun for every * * *

defect found in prior tests of the system

Prototyping * *

General approach to gather data from
users by building and demonstrating to
them some part of a potential
application

) o

Random testing

Technique involving random selection
from a specific set of input values where
any value is as likely as any other

Range testing

For each input identifies the range over
which the system behavior should be
the same

Recovery testing * * * *

Testing how well a system recovers from|
crashes, hardware failures, or other
catastrophic problems

Regression testing

Testing a system in light of changes *
made during a development spiral,

debugging, maintenance, or the
development of a new release

Risk-based testing

Measures the degree of business risk in
a system to improve testing

Run charts

A graphical representation of how a
quality characteristic varies with time

Sandwich testing

Integrating modules or programs from
the top and bottom simultaneously

Sanity testing

Typically an initial testing effort to
determine if a new software version is
performing well enough to accept it for
a major testing effort. For example, if
the new software is crashing systems
every five minutes, bogging down
systems to a crawl, or destroying
databases, the software may not be in 2
“sane” enough condition to warrant
further testing in its current state

* | % | #
) o
* % % % %

Security testing * * *

Testing how well the system protects
against unauthorized internal or
external access, willful damage, etc.;
may require sophisticated testing
techniques

State transition testing

Technique in which the states of a * * *

system are first identified and then test
cases are written to test the triggers to
cause a transition from one condition ta
another state

Statement coverage testing * * *

Every statement in a program is
executed at least once

Statistical profile testing

Statistical techniques are used to * * *

develop a usage profile of the system
that helps define transaction paths,
conditions, functions, and data tables

Stress testing * * *

Term often used interchangeably with
“load” and “performance” testing. Also
used to describe such tests as system
functional testing while under unusually
heavy loads, heavy repetition of certain
actions or inputs, input of large
numerical values, or large complex
gueries to a database system

TESTING TECHNIQUES
COVERING DIFFERENT PURPOSES
ALONG THEIR CLASSIFICATION

Technique\ Description Manual Automated Static Dynamic Black-box | White-box

* | K

Structured walkthroughs *

A technique for conducting a meeting at
which project participants examine a
work product for errors

Syntax testing

*

Data-driven technique to test
combinations of input syntax

System testing

Black-box type testing that is based on *
overall requirements specifications;
covers all combined parts of a system

Table testing

Testing access, security, and data
integrity of table entries

Combining individual units into threads
of functionality which together
accomplish a function or set of functions

Top-down testing

Integrating modules or programs
starting from the top

* | | O | X %

*
*
*
Thread testing *
*
*

* | | | %

Unit testing
The most “micro” scale of testing; to *

test particular functions or code
modules. Typically done by the
programmer and not by testers, as it
requires detailed knowledge of the
internal program design and code. Not
always easily done unless the
application has a well-designed
architecture with tight code; may
require developing test driver modules
or test harnesses

Usability testing
Testing for “user-friendliness.” Clearly * * * *

this is subjective, and will depend on
the targeted end-user or customer. User
interviews, surveys, video recording of
user sessions, and other techniques can|
be used. Programmers and testers are
usually not appropriate as usability
testers

User acceptance testing * * * *

Determining if software is satisfactory ta
an end-user or customer

White-box testing
Test cases are defined by examining the * * *

logic paths of a system

Testing Development Phases

\/-M Odel Lifecycle Vs.

Review Testing Types

] Verifies
User Requirements Acceptance Testing
Verifies
User Requirements Acceptance Testing
Verifies
Physical Design Integration Testing
Verifies

Program Unit

Unit Testing

Design

Coding

